The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 0 X (a+1)X (a+1)X 0 X (a+1)X 0 X (a+1)X aX aX aX aX 0 0 X X 0 X aX aX aX 0 X aX (a+1)X (a+1)X (a+1)X (a+1)X 0 0 X X 0 X aX aX aX 0 X aX (a+1)X (a+1)X (a+1)X (a+1)X 0 0 X X 0 X aX aX aX 0 X aX (a+1)X (a+1)X (a+1)X (a+1)X 0 0 X (a+1)X (a+1)X X aX aX 0 (a+1)X X aX 0 X aX (a+1)X 0 X (a+1)X aX aX X 0 X (a+1)X (a+1)X 0 aX (a+1)X aX X 0 0 X (a+1)X aX aX X 0 X (a+1)X (a+1)X 0 aX (a+1)X aX X 0 0 X (a+1)X aX aX X 0 X (a+1)X (a+1)X 0 aX (a+1)X aX X 0 generates a code of length 64 over F4[X,sigma]/(X^2) who´s minimum homogenous weight is 192. Homogenous weight enumerator: w(x)=1x^0+252x^192+3x^256 The gray image is a linear code over GF(4) with n=256, k=4 and d=192. As d=192 is an upper bound for linear (256,4,4)-codes, this code is optimal over F4[X,sigma]/(X^2) for dimension 4. This code was found by Heurico 1.16 in 0.031 seconds.